Sveaskog
Improving forest harvest planning with AI for greater accuracy and sustainability
Improving the Estimation of Basal Area in Harvest Planning
In the forestry industry, there are several reasons why today’s forest management plans do not always match reality. Factors such as lack of objectivity from the planner or even minor negligence can have serious consequences for the final outcome. The level of uncertainty is so significant that one should account for a possible discrepancy of up to twenty percent, which, in numerical terms, can mean a difference of around SEK 500,000 in value for an average-sized forest property in central Sweden.
Harvesters, the machines used for logging, generate more data than a fighter jet. This volume of data is far beyond what humans can process, but it is easy to imagine the opportunities it presents for AI.
Purpose
Sveaskog, Sweden’s largest forest owner, conducts forest inventories using statistical methods and performs thinning and regeneration harvesting across more than 40,000 hectares each year. Before harvesting a specific area, extensive preparatory work is required.
A planner goes out to the designated forest area equipped with a relascope to measure and estimate approximate tree density, identify different tree species, and assess the average height and thickness of the trees.
Traditionally, a set of statistical formulas is applied to this information to estimate the potential yield from a particular area. Sveaskog partnered with Tenfifty to determine whether historical data and predictive modeling could be used to improve forecasts of actual outcomes from harvested forest areas.
In this project, Tenfifty’s AI experts helped Sveaskog model the structure and characteristics of the forest. Based on the planner’s measurement points, our algorithms incorporated additional information such as:
The forest’s altitude above sea level
Adjustments made in nearby areas
The identity of the individual conducting the measurements (as estimation errors vary between people)
The forest’s geographical location within Sweden
Growth conditions
Type of soil and terrain
Datakällor
Historiska data från mänskliga skogsobservationer via relaskop. Topologisk laserdata. Skogsmaskiner. Etc.
Teknologier
Probabilistic programming, categorical gradient boosted trees.
Resultat
Tenfifty skapade algoritmer som mer exakt förutser hur mycket skog Sveaskog får ut vid en skogsavverkning. Det möjliggjorde i snitt 20 procent bättre uppskattningar på bland annat hur många stammar de kan få ut efter en avverkning och volymen från varje träslag. Dessutom förbättrades osäkerhetsuppskattningarna samtidigt som “partiskhet” från mänskliga uppskattningar eliminerades. Sveaskog kan nu med mycket högre säkerhet planera inför framtida avverkningssområden och hålla löften gentemot sågverk och kunder.
Sänkt medelfel: 2,6 till 2,0 = 23% förbättring. Minskad varians och färre bristfälliga uppskattningar